Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

نویسندگان

  • M.N. Grisolia
  • J. Varignon
  • G. Sanchez-Santolino
  • A. Arora
  • S. Valencia
  • M. Varela
  • R. Abrudan
  • E. Weschke
  • E. Schierle
  • J.E. Rault
  • J.-P. Rueff
  • A. Barthélémy
  • J. Santamaria
  • M. Bibes
چکیده

At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface

While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Elec...

متن کامل

In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation

Controlled tuning of material properties by external stimuli represents one of the major topics of current research in the field of functional materials. Electrochemically induced property tuning has recently emerged as a promising pathway in this direction making use of nanophase materials with a high fraction of electrode-electrolyte interfaces. The present letter reports on electrochemical p...

متن کامل

Metal-ligand interplay in strongly correlated oxides: a parametrized phase diagram for pressure-induced spin transitions.

We investigate the magnetic properties of archetypal transition-metal oxides MnO, FeO, CoO, and NiO under very high pressure by x-ray emission spectroscopy at the Kbeta line. We observe a strong modification of the magnetism in the megabar range in all the samples except NiO. The results are analyzed within a multiplet approach including charge-transfer effects. The spectral changes are well ac...

متن کامل

Emergent magnetism at transition-metal-nanocarbon interfaces.

Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with...

متن کامل

Electronic charge and orbital reconstruction at cuprate-titanate interfaces

In complex transition metal oxide heterostructures of physically dissimilar perovskite compounds, interface phenomena can lead to novel physical properties not observed in either of their constituents. This remarkable feature opens new prospects for technological applications in oxide electronic devices based on nmthin oxide films. Here we report on a significant electronic charge and orbital r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016